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Abstract 

Crowdsourcing platforms enable requesters to elicit information from thousands of workers worldwide. A 
question that arises when outsourcing a task to a crowd is how many crowd workers a requester should 
hire. Focusing on forecasting tasks, we provide a methodological way of answering that question by formally 
describing how the number of crowd workers relates to the expected forecast error. Specifically, we discuss 
how an error curve associates a number of hired crowd workers with a fixed and a variable error. We then 
suggest an optimality concept that enables requesters to select an optimal number of crowd workers based 
on the tolerable variable error. In an illustrative study on Amazon Mechanical Turk, we demonstrate how 
highly prescriptive our approach is. In particular, we show how requesters can perform ex-ante and ex-post 
analyses by determining the optimal number of workers before running a task and by determining the fixed 
error after running the task and collecting forecasts.  
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Introduction 

Crowdsourcing platforms give employers (requesters) access to a global population of (crowd) workers at 
virtually any time. The process of outsourcing a task to a crowd can happen in many different ways. We 
consider in this paper the crowdsourcing of well-defined, short tasks — sometimes called microtasks — that 
can be completed individually online and do not require highly specialized skills (Gadiraju et al., 2015). 
Several different microtasks have been successfully outsourced to crowds, e.g., the analysis of sentiments 
behind textual data (Borromeo and Toyama, 2015) and image collection (Yan et al., 2009).  

Clearly, there are crucial factors related to crowd composition that may lead to successful crowdsourcing 
practices, e.g., the diversity (Hong et al., 2020), skills (Budescu and Chen, 2015), and size (Robert and 
Romero, 2015) of the crowd. It is the latter factor that we focus on in this paper. In particular, we study the 
impact of crowd sizes on collective forecasting accuracy. The forecasting tasks we consider involve eliciting 
numerical values from individuals in a crowd to predict the outcome of an unknown event. We assume that 
a realized outcome (ground-truth value) will eventually be observed and can be used to determine forecast 
errors. Our task formulation is generic enough to capture several realistic problems, e.g., forecasting 
financial asset prices, demand for a product, event attendance, sports outcomes, etc.  

We argue that there are two major challenges when determining the optimal number of crowd forecasters. 
First, traditional statistical techniques to determine sample sizes, such as power analysis (Cohen, 2013), 
may not be appropriate in crowdsourcing contexts as they do not consider forecast errors. Our approach 
differs because we rely on results that link the number of hired crowd workers to an expected forecast error. 
Specifically, our techniques rely on an error curve in which each number of hired crowd workers is linked 
to a fixed and a variable error, where the variable error decreases with more workers.  

The second challenge we face is that “optimality” may have multiple definitions. For example, an optimal 
number of crowd workers can mean the maximum number a budget can pay for or the minimum number 
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that produces a requester’s acceptable expected forecast error. Focusing on forecasting tasks, we define our 
optimality concept based on that latter idea, i.e., an optimal solution is based on a requester’s tolerable 
variable error. Having established a formal optimality criterion, we derive the formulae required to 
determine the optimal number of crowd workers given a tolerable variable error and vice versa. To 
demonstrate the prescriptive power of our solution, we ran a demonstrative study on the crowdsourcing 
platform Amazon Mechanical Turk where we asked crowd workers to predict the outcome of a basketball 
game. When discussing that study, we highlight how a requester can use our approach ex-ante to define the 
optimal number of workers. We also suggest a bootstrapping algorithm to be used in an ex-post analysis to 
estimate the error curve once ground-truth values are available. 

Research Background and Related Work 

The idea of crowdsourcing forecasts gained prominence with the advent of research on superforecasters 
(Tetlock and Gardner, 2016). In short, under some conditions, it has been suggested that some individuals 
are consistently more accurate than the general public or experts in forecasting tasks as well as that non-
experts can become incredibly accurate forecasters with appropriate training (Mellers et al., 2015). Another 
academic pillar supporting the crowdsourcing of forecasts is called the wisdom of crowds (Surowiecki, 
2005). This research stream suggests that the elicitation and proper aggregation of forecasts produced by a 
crowd results in a more accurate forecast in expectation than any individual forecast.  

Research on forecast aggregation has been well-studied by the decision analysis community, and it predates 
the research work on superforecasters and the wisdom of crowds. For example, the core idea that lower 
correlations among individual forecast errors result in greater expected benefits from combining forecasts 
was first developed in the 1960s (Bates and Granger, 1969). In the 1980s, hundreds of related research had 
already been published (Winkler et al., 1989). Our formulae in this paper do not consider correlations of 
forecast errors because that would require knowledge of the historical accuracy of crowd forecasters — a 
crucial piece of information that is not available on most generic crowdsourcing platforms, such as Amazon 
Mechanical Turk. Our work instead relies on an error curve, i.e., a formal association between the number 
of crowd forecasters and the expected forecast error. In that regard, Lamberson and Page (2012) and Davis-
Stober et al. (2015) proved a more generic result concerning the shape of error curves than what we rely on 
in this paper by allowing a non-zero covariance among forecast errors.  

Carvalho et al. (2016) computationally derived the error curve and then approximated the underlying 
function using piecewise (segmented) linear regression analysis. The authors further suggested the 
intersection of segments as the optimal number of crowd workers a requester should hire. Unfortunately, 
that approach requires estimating the error curve first, i.e., knowing ground-truth values. As such, it cannot 
be applied ex-ante to determine the optimal number of crowd workers unless one must assume that 
forecasts reported on future forecasting tasks will resemble previously reported forecasts. That assumption 
allows a previously estimated error curve to be reused. Alternatively, our method relies only on the existence 
of the error curve but not necessarily on estimates of its parameters.  

Given an error curve and under our proposed optimality concept, we show that the marginal benefits of 
hiring one extra crowd worker in order to decrease forecast errors quickly diminish. This result shows the 
power of small crowds. Related to that topic, there has been a flurry of recent experimental and theoretical 
work demonstrating that there is value in building small groups from a crowd. For example, Vercammen et 
al. (2019) found that a group of six crowd workers has a collective IQ one standard deviation above the 
mean for the general population. Callison-Burch (2009) showed that combining the judgments of five non-
experts is enough to achieve the equivalent quality of experts in translation tasks. Goldstein et al. (2014) 
found that smaller, smarter crowds can be identified in advance and that they beat the wisdom of the larger 
crowd. Overall, our work validates the above stream of research through formal mathematical modeling. 

Mathematical Model 

We consider a scenario where a requester elicits a point forecast from a group of crowd workers. It is well-
known in the decision analysis (Makridakis and Winkler, 1983) and machine learning (Dietterich, 2000) 
fields that, under certain conditions, aggregating forecasts from independent experts/models tends to 
improve the expected accuracy of the final forecast. A natural instance of our studied setting is when a 
newsvendor requests forecasts concerning the future demand for a product to properly build inventory 
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(Carvalho and Karimi, 2021). Other examples include predicting stock prices and estimating the number of 
future students accepting offers sent by a university. Formally, given 𝑛 ∈ ℤ+ crowd workers, each expert 𝑖 ∈
{1, … , 𝑛}  reports a forecast 𝑓𝑖 ∈ ℝ . We assume the reported forecasts are independent and identically 
distributed (i.i.d.). We further assume that a true (ground-truth) value 𝑡 ∈ ℝ will materialize in the future, 
e.g., a true stock price or product demand will eventually be observed. In practical applications, this latter 
condition is required to measure forecast accuracy and issue outcome-contingent payments. Although we 
focus on single events, we note that our model and results naturally extend to multiple independent events. 

Error Curve 

Having established the basic notation we use throughout the paper, we now move to understand what 
happens with the expected forecast error when aggregating forecasts from different numbers of crowd 
workers. To do so, we rely on some traditional results in statistical inference. For example, to estimate 
errors, we rely on the mean square error (MSE), a robust measure that considers the variance and the bias 
of an estimator. Given a point forecast 𝑓 ∈ ℝ and the realized value 𝑡 ∈ ℝ, the MSE is defined as follows: 

MSE(𝑓, 𝑡)  = (𝑓 − 𝑡)2 (1) 

Naturally, the lower the MSE, the more accurate a forecast is. To estimate the error when aggregating 
forecasts for a random group of g crowd workers, for 𝑔 ∈ {1, 2, … , 𝑛}, we consider all combinations of crowd 

workers 𝐶𝑛,𝑔 =
𝑛!

(𝑛−𝑔)! × 𝑔!
 in groups of size g. For each group, we perform forecast aggregation by calculating 

the simple, equal-weight average of the reported forecasts, which we denote by 𝑓̅(𝑔,𝑥), for 𝑥 ∈ {1, 2, … , 𝐶𝑛,𝑔}. 

That is, 𝑓̅(𝑔,𝑥) is the average forecast from a group of size 𝑔 indexed by 𝑥. We focus on equal-weight averages 
because they tend to perform well in practice and, at the same time, there are limits to the accuracy gains 

from combining forecasts optimally beyond simple averages (Genre et al., 2013). That said, we define 𝑓̅(𝑔,⋅) 
as the average of the aggregated forecasts for groups of size 𝑔: 

𝑓̅(𝑔,⋅) =
∑ 𝑓̅(𝑔,𝑥)𝐶𝑛,𝑔

𝑥=1  

𝐶𝑛,𝑔

  

The corresponding variance is defined as: 

var(𝑔,⋅) =
∑ (𝑓̅(𝑔,𝑥) − 𝑓̅(𝑔,⋅))

𝐶𝑛,𝑔

𝑥=1

2
 

𝐶𝑛,𝑔

  

After aggregating the reported forecasts for each possible group of size 𝑔 , one can then estimate the 
underlying expected error produced by groups of that size using MSE as follows: 

𝜖𝑔 =
∑ (𝑓̅(𝑔,𝑥) − 𝑡)

𝐶𝑛,𝑔

𝑥=1

2
 

𝐶𝑛,𝑔

  

Repeating the above procedure for all group sizes 𝑔 ∈ {1,2, … , 𝑛} produces what we call the error curve, i.e., 
a relationship between the number of crowd workers in a group (𝑔) and the expected error for the aggregate 
forecast (𝜖𝑔). 

Characterizing the Error Curve 

We next introduce a well-known result in decision analysis that formalizes the relationship between the 
number of crowd workers (group size) and the expected error concerning the aggregate forecast. In other 
words, we formally define the shape of the error curve. 

Proposition 1. 𝜖𝑔 = 𝛼 + 𝛽 × 𝑔−1, for 𝛼, 𝛽 ≥ 0 and 𝑔 ∈ {1, 2, … , 𝑛}. 

Proof. Given the bias-variance decomposition of the mean squared error (Geman et al., 1992), we have that: 

𝜖𝑔 =
∑ (𝑓̅(𝑔,𝑥) − 𝑡)

𝐶𝑛,𝑔

𝑥=1

2
 

𝐶𝑛,𝑔

= bias (𝑓̅(𝑔,𝑥) − 𝑡)
2

+ var(𝑔,⋅) 
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Recall that any 𝑓̅(𝑔,𝑥)  is the average of 𝑔  independent and identically distributed random variables. 

Moreover, var(𝑔,⋅) is the variance of the sampling distribution, which means that var(𝑔,⋅) = 𝜎2/𝑔, where 𝜎  is 
the standard deviation for the whole population of forecasts. Therefore, the above equation becomes: 

𝜖𝑔 = bias(𝑓̅(𝑔,𝑥) − 𝑡)
2

+
𝜎2

𝑔
 

We can now define 𝛼 = bias(𝑓̅(𝑔,⋅), 𝑡)
2
and 𝛽 = 𝜎2, thus completing the proof.                                                     

The above proposition shows that the expected forecast error decreases monotonically when increasing the 
number of aggregated forecasts. This result captures what was empirically found by Makridakis and 
Winkler (1983), namely that forecasting accuracy improves while the variability of the accuracy among 
different combinations decreases as the number of forecasts in the average increases. Moreover, the first 
theorem in the work by Lamberson and Page (2012) reduces to Proposition 1 when the covariance among 
the errors of the reported forecasts is zero. An interesting aspect of Proposition 1 is that it allows for crowds 
to be wrong. That is, lim

𝑔→∞
𝜖𝑔 = 𝛼. In other words, 𝛼 is a fixed error independent of the crowd size, whereas 

𝛽/𝑔 is a variable error that is affected by the crowd size. 

Optimal Number of Crowd Workers 

Given the theoretical result in Proposition 1, a natural question to ask is how to determine an “optimal”  
number of crowd workers for a given forecasting task. We note that aggregating forecasts from the whole 
population of 𝑛 crowd workers results in the lowest expected error. However, it might not be feasible to hire 
that many crowd workers in practice. Thus, one must first define what “optimal” means. Recall that 
according to Proposition 1, there are two major components contributing to the error 𝜖𝑔, namely a fixed 

error 𝛼 and a variable error 𝛽/𝑔 . One can reduce, in expectation, the variable error by increasing the 
number of crowd workers reporting forecasts. Given the above observation, we next suggest a new 
optimality concept based on how much variable error the requester is willing to accept. We later illustrate 
how this optimality concept can help the requester define ex-ante the optimal number of crowd workers for 
a forecasting task. In this way, our ideas constitute a decision support system regarding the number of 
crowd workers to be hired. We start by defining the error reduction sequence, i.e., the reduction in the 
variable error when the requester adds one extra crowd worker. For the sake of illustration, consider what 
happens with the error 𝑔 when moving from 𝑔 = 1 crowd worker to a group of 𝑔 = 2 crowd workers: 

𝑠1,2 = 𝜖1 − 𝜖2 = 𝛼 + 𝛽 − 𝛼 −
𝛽

2
 =  

β

2
 

Now, from 𝑔 = 2 to 𝑔 = 3, we have that: 

𝑠2,3 = 𝜖2 − 𝜖3 = 𝛼 +
𝛽

2
− 𝛼 −

𝛽

3
=

β

6
 

More generally, moving from 𝑔 = 𝑥 to 𝑔 = 𝑥 + 1 causes an error reduction of: 

𝑠𝑥,𝑥+1 = 𝜖𝑥 − 𝜖𝑥+1 =
𝛽

𝑥 × (𝑥 + 1)
 

Since the 𝛽 term is fixed, we can therefore ignore it and focus only on the associated fraction. The error 

reduction sequence (𝑠1,2,  𝑠2,3,  𝑠3,4, ⋯ , 𝑠𝑛−1,𝑛)  is then defined as (
1

2
,

1

6
,

1

12
, ⋯ ,

1

(𝑛−1)× 𝑛
). Focusing first on a 

population of infinite size (𝑛 = ∞), we show next that the series (𝑠1,2,  𝑠2,3,  𝑠3,4, … ) is convergent. 

Proposition 2. ∑ 𝑠𝑥,𝑥+1 = 1∞
𝑥=1 . 

Proof. After expanding the above summation, we have: 

∑ 𝑠𝑥,𝑥+1 =
1

2
+ (

1

2
−

1

3
) + (

1

3
−

1

4
) + ⋯ + (

1

𝑦
−

1

𝑦 + 1
) + ⋯

∞

𝑥=1

 

 for 𝑦 ∈ ℤ+. After rearranging the above terms, we obtain that: 
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∑ 𝑠𝑥,𝑥+1 = 1 + (
1

3
−

1

3
) + (

1

4
−

1

4
) + ⋯ + (

1

𝑦 + 1
−

1

𝑦 + 1
) + ⋯ = 1

∞

𝑥=1

 

Given the above results, consider next partial sums defined as 𝑆𝑦 = ∑ 𝑠𝑥,𝑥+1
𝑦−1
𝑥=1 .  The corollary below 

characterizes 𝑆𝑦. 

Corollary 1. 𝑆𝑦 = ∑ 𝑠𝑥,𝑥+1
𝑦−1
𝑥=1 = 1 − 1/𝑦. 

Proof. After expanding the above summation, we have: 

∑ 𝑠𝑥,𝑥+1

𝑦−1

𝑥=1

=
1

2
+ (

1

2
−

1

3
) + (

1

3
−

1

4
) + ⋯ + (

1

𝑦 − 1
−

1

𝑦
) 

After rearranging the above terms, we obtain that: 

∑ 𝑠𝑥,𝑥+1 = 1 + (
1

3
−

1

3
) + (

1

4
−

1

4
) + ⋯ + (

1

𝑦 − 1
−

1

𝑦 − 1
) −

1

𝑦
= 1

𝑦−1

𝑥=1

−
1

𝑦
 

We note that the above corollary enables a requester to choose the ideal number of crowd workers based on 
the acceptable amount of variable error via partial sums of the error reduction sequence. We are now in a 
position to formally define our optimality concept. 

Definition 1 (𝛾-optimality). We say that a number of crowd workers y ∈ ℤ+ is γ-optimal, for 0 ≤  γ <  1, 
when aggregating forecasts from y crowd workers leads to a reduction of at least γ of the total variable error. 

For example, say that a requester is willing to accept at most 25% of the total variable error. This means 
that the total reduction in variable error must be at least 75%. This can be achieved by hiring 𝑦 = 4 crowd 
workers since 𝑠1,2 + 𝑠2,3 + 𝑠3,4 = 1/2 + 1/6 + 1/12 = 0.75. That is, we say that hiring four crowd workers is 

0.75-optimal. More generally, one can find the ideal number of crowd workers 𝑦 for a desired reduction in 
variable error 𝛾 by solving the following optimization problem: 

min = 𝑦 
𝑠. 𝑡. = 𝛾 ≤ 𝑆𝑦  

= 𝑦 ∈ 𝑍+  

(2) 

In words, the optimization problem in (2) leverages Corollary 1 by finding the smallest positive integer 𝑦 
such that the associated partial sum 𝑆𝑦 is greater than or equal to the desired variable error reduction 𝛾. 

That is, the variable error reduction associated with 𝑦 is at least the desired value 𝛾. Figure 1 shows the 
variable error reduction for different numbers of crowd workers. An interesting point to note is that there 
is not too much benefit — accuracy-wise — beyond a certain number of crowd workers. For example, relying 
on only three crowd workers causes the total variable error to decrease by 66.6%. This number goes all the 
way to 90% with ten crowd workers and 99% with 100 crowd workers. This result highlights the wisdom of 
small crowds we previously discussed in Section 2.  

The above results rely on a population of infinite size. In particular, the following adjustment must be made 
to the optimization program in (2) for a population of finite size n: 

min = 𝑦 

𝑠. 𝑡. = 𝛾 ≤
𝑆𝑦

𝑆𝑛

  

= 𝑦 ∈ {1, 2, … , 𝑛}  

(3) 

In words, the series 𝑠1,2 + 𝑠2,3 + 𝑠3,4 + ⋯ + 𝑠𝑛−1,𝑛 no longer conveniently sum to one. Instead, it equates to 

𝑆𝑛, which now represents the greatest variable error reduction. The first constraint in (3) takes that fact into 
account when normalizing the variable error reduction. 
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Figure 1. Variable Error Reduction (𝜸) for Different Numbers of Crowd Workers (𝒚). 

Illustrative Study 

The optimization problems in (2) and (3) provide a highly prescriptive way of determining the optimal 
number of crowd workers for a certain forecasting task. Moreover, the proposed solution is not dependent 
on any unknown term that defines the error curve, such as 𝛼 and 𝛽 in Proposition 1. Nonetheless, having 
access to ground-truth values, a requester might be interested in estimating the fixed error (𝛼) as well as 
the coefficient of the variable error (𝛽). That can provide useful information when, for example, future 
forecasting tasks and crowd composition are expected to reflect previous ones. By means of an illustrative 
study, we highlight in this section how our theoretical findings can be used both in an ex-ante way to 
determine the optimal number of crowd workers to hire as well as in an ex-post way to determine the error 
curve and the associated limitations when using crowd workers in a given task. 

Amazon Mechanical Turk 

Our study concerns the crowdsourcing of forecasts. Specifically, we ran an experiment similar to the work 
by Carvalho et al. (2016). We hired a total of 50 crowd workers from the crowdsourcing platform Amazon 
Mechanical Turk (MTurk) to predict the outcome of an NBA game. Data produced by MTurkers have been 
widely used in information systems (Jia et al., 2017), accounting (Farrell et al., 2017), and operations 
management (Lee et al., 2018), among other business research communities. MTurk is particularly suitable 
for our purposes since the assumptions behind our model and results hold true there. For example, detailed 
information about crowd workers, including expertise and experience with forecasting tasks, may not be 
immediately available, meaning that our i.i.d. assumption is appropriate when randomly selecting a group 
of MTurkers to produce forecasts. Moreover, the performance on previous tasks, including forecasting 
tasks, is not publicly available, meaning that a requester has little to no relevant information to discriminate 
MTurkers based on historical forecast accuracy. That is a strong indicator in favor of using simple averages 
when aggregating forecasts — as assumed by our model — as opposed to more elaborate weighted averages. 

To elicit forecasts, we adapted the interface used by Carvalho et al. (2016). After explaining the task and 
underlying interface, MTurkers could assign probability values to different outcomes by simply moving a 
slider from one side to another (see Figure 2). Since the underlying task has only two outcomes, a single 
probability value can represent a crowd worker’s forecast, as required by our model. The slider’s initial value 
was set at the 0.5/0.5 prediction. The crowd worker could assign more probability mass to a team’s victory 
by moving the slider closer to the team’s name. Whenever moving the slider, the crowd worker could see 
the amount of money made under the two different outcomes as well as the associated probability 
distribution (forecast). The quadratic (Brier) scoring rule was used to define payments (Brier et al., 1950). 
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This forecasting task has a natural realized outcome in that the requester can simply observe the result of 
the game; if, say, the home team is the winner of the game, then the realized outcome associated with that 
team is equal to 1. Otherwise, it is set to 0. Ground-truth data is required when estimating the error curve 
in an ex-post analysis. The forecasts used in our analysis are then the probability values associated with the 
home team winning the game. 

 

Figure 2. Interface Used for Data Collection. 

Ex-Ante Analysis 

Having described a forecasting task in the previous subsection, a question that arises is: how many crowd 
workers should a requester hire? Traditional statistical approaches based on power analysis (Cohen, 2013) 
are not suitable since they do not take forecast evaluation into account. Alternatively, the requester can 
explicitly rely on expected accuracy results by following the ideas we previously described. For example, say 
the requester has the budget to hire five crowd workers. Corollary 1 then suggests a reduction of 80% in the 
variable error, i.e., hiring five workers is 0.8-optimal. If the requester needs further accuracy guarantees, 
e.g., a 0.96-optimal solution, then solving the optimization problem in (2) implies that the requester needs 
to hire 25 crowd workers. 

The above analysis assumes an infinite population of crowd workers. In the case of MTurk, this is a 
reasonable assumption for our purposes, given its massive size. In particular, it has been estimated that 
there are between 100,000 and 500,000 MTurkers (Difallah et al., 2018). Adjusting the above analysis by 
solving the optimization problem in (3) when 𝑛 =  100,000, we still obtain that hiring five and 25 crowd 
workers are approximately 0.8- and 0.96-optimal. 

Note how the ex-ante analysis is universal, i.e., it works for any similar forecasting task since it does not 
rely on the requester knowing the values of 𝛼  and 𝛽  to determine the error curve. We next discuss an 
approach to estimate those parameters in an ex-post analysis. 

Ex-Post Analysis 

Having elicited forecasts and obtained ground-truth values, the requester may now determine how good 
the crowd workers are in an ex-post analysis. In particular, the ground-truth values help to define the error 
curve characterized by Proposition 1. The error curve, in turn, determines the expected performance of 
crowd workers in future, similar forecasting tasks by defining the fixed error. To unequivocally determine 
the error curve, the requester needs access to the entire population of crowd workers and their forecasts, 
which is unlikely to be feasible in practice. Given a sample of 𝑚 <<  𝑛 crowd workers and their reported 
forecasts, the requester can estimate the error curve by following a bootstrapping approach. For example, 
to estimate the error when aggregating 𝑔 forecasts, the requester can sample 𝑔 crowd workers, aggregate 
their forecasts by using simple, equal-weight averaging, and measure the MSE of the aggregate forecast. 
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Clearly, the resulting error estimate regards a single sample. One can generalize this approach by creating 
a total of ℵ bootstrap resamples and, after repeating the above procedure ℵ times, obtain ℵ error estimates 
for a group of size 𝑔. The final forecast error estimate for that group is then the average of those ℵ error 
estimates. Algorithm 1 formalizes the above approach. 

for all 𝑔 ∈ {1,2, … , 𝑚} 𝐝𝐨 

          for all 𝑗 ∈ {1,2, … , ℵ} 𝐝𝐨 

                    𝜃 = sample 𝑔 from the 𝑚 available forecasts 

                    average = mean(𝜃) 

                    𝑒𝑟𝑟𝑜𝑟[j]  =  MSE(𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑡) 

          end for 

          𝜖𝑔̂ =
∑ 𝑒𝑟𝑟𝑜𝑟[j]ℵ 

𝑗=1

ℵ
  

end for 

Algorithm 1. Bootstrapping Procedure 

Using Algorithm 1, we estimate the error curve for the 50 crowd workers in our data set using a total of ℵ =
 1,000,000  bootstrap resamples. Thereafter, given the estimated errors for different numbers of crowd 
workers, we fit the equation we derive in Proposition 1 to our data using the Gauss-Newton nonlinear least-

squares method. This results in the values 𝛼̂ = 0.05894, 𝛽̂ = 0.0884  (residual sum of squares less than 
5 × 10−8), and the estimated error-curve equation being equal to 𝜖𝑔̂ = 0.05894 + 0.0884/𝑔. Figure 3 shows 

the data and fitted curve. From it, one can see that the estimated fixed error produced is approximately 
0.059. That is, the total error is still above zero no matter how many crowd workers are used, thus showing 
that crowds are not necessarily perfect forecasters. 

 

Figure 3. Estimated Error Curve. 

Conclusion 

A crucial problem when a requester elicits information from a crowd is to determine how many crowd 
workers are needed. In this paper, we proposed a highly prescriptive approach that solves that problem in 
forecasting tasks. We started by formally quantifying the impact of the number of crowd workers on the 
expected forecast error, resulting in an artifact called the error curve. In particular, we connected each group 
size to a fixed and a variable error. We then suggested a method to determine the optimal number of crowd 
workers given a tolerable variable error. Our formulae also allow a requester to estimate the variable error 
given a number of crowd workers. That feature is important because the requester might have budget 
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constraints and, thus, be able to hire only a limited number of crowd workers in practice. Our approach 
provides some formal guarantees on the variable error associated with that number. 

We argue that the assumptions behind our model and methods are rather natural. For example, it is 
expected that forecasting tasks have a realized outcome (ground truth), which is required for the 
construction of an error curve. Furthermore, our results also rely on the aggregation of forecasts using 
simple, equal-weight averages. That is desirable in most crowdsourcing tasks because equally weighting the 
forecasts reported by all crowd workers reduces the risk of a highly inaccurate aggregate forecast since that 
approach requires no estimation of weights or parameters and, consequently, it is robust by not being 
sensitive to misestimation (Winkler, 2015). Moreover, decisions on weighting should be based on what is 
known about the background and expertise of the crowd workers whose forecasts are being aggregated. 
That makes weighting infeasible in crowdsourcing platforms such as MTurk, which has a massive 
population of crowd workers and limited information about them. These points, together with the fact that 
many crowdsourcing platforms do not provide a formal communication channel between workers, make 
the assumption that crowd workers’ forecasts are independent and identically distributed acceptable. 

Besides finding the ideal number of crowd workers for a desirable variable error and vice versa, we also 
discussed a bootstrapping algorithm to fully estimate the error curve. That algorithm can be helpful when 
the requester acquires ground-truth data and believes that crowd workers are likely to perform similarly in 
future forecasting tasks. In such cases, the estimated error curve enables the requester to determine fixed 
errors, i.e., how wrong the crowd will be in future tasks regardless of the number of hired workers. In an 
illustrative study on Amazon Mechanical Turk, we highlighted how our ideas could be used in an ex-ante 
and in an ex-post sense, i.e., to determine the optimal number of workers before running a crowdsourced 
task and to estimate the error curve after running the task. 

In terms of future work, a natural extension of our ideas is to create methods to determine the optimal 
number of crowd workers beyond forecasting tasks. A challenge that can occur in those settings is that 
ground-truth values might not be available. For example, sentiment analysis or image labeling tasks can be 
subjective. Consequently, the idea of creating a universal error curve is not valid. On the other hand, there 
are some evaluation techniques a requester can rely on which do not depend on ground-truth values. For 
example, in tasks involving multiple-choice questions, one can ask crowd workers to endorse the answer 
most likely to be true and to predict the empirical distribution of the endorsed answers. Thereafter, the 
crowd workers are evaluated by the accuracy of their predictions — i.e., how well they match the empirical 
frequency — as well as how surprisingly common their answers are. That evaluation approach is the core 
behind the seminal Bayesian Truth Serum method (Prelec, 2004). That said, it is worth it investigating an 
optimal criterion for multiple-choice tasks alongside how to define an optimal number of crowd workers 
under the Bayesian Truth Serum method. Finally, it might be fruitful to investigate other forecast 
aggregation techniques beyond averaging. For example, there are statistical methods that aggregate 
forecasts by simulating a consensus-reaching process among the forecasters (Carvalho and Larson, 2013; 
DeGroot, 1974). Under such techniques, a new error curve might result in fixed errors lower than that 
derived in Proposition 1. Overall, we believe the above research directions will lead to a more effective and 
efficient information aggregation from crowds. 
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